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Abstract—High frequency transformers (HFT) are needed
along with power electronic converters to replace line frequency
transformers in high power systems to increase power density.
For the design of HFT, it is important to accurately estimate
copper losses due to a duty-cycle modulated current waveform.
The design also requires determination of the optimal thickness of
winding layers, leading to a minimum AC power loss. This paper
shows that the Fourier- series method for the loss computation
requires the consideration of a large number of harmonics,
leading to considerable computational time in the determination
of the optimal thickness. A closed form approximate expression
for the power loss is presented in this paper that obviates any
need for a large series summation, resulting in a relatively simple
computation of optimal thickness. Results are validated through
numerical computations.

d Thickness of the foil winding.

δ Skin depth at the fundamental frequency.

∆ d/δ.

P AC power losses.

D Duty ratio.

p Number of layers.

k Harmonic number.

a Height of a conductor.

h Height of winding.

ρ Resistivity of copper.

I Peak value of current.

Nl The number of turns per layer.

N Total number of turns (= Nlp).

∆opt Optimal value of ∆.

MLT Mean Length of Turns.

η Nla/h.

I. INTRODUCTION

In the recent literature there is a lot of emphasis on replacing

line frequency high power transformers with their high fre-

quency counterpart along with associated power electronics in

order to increase power density. High frequency transformers

are much smaller in size in comparison to its low frequency

60 Hz counterpart. Due to smaller effective area to dissipate

heat, it is important to accurately estimate and minimize

the winding losses. The copper losses in the transformer

increase with frequency because of skin and proximity effects.

In [1] winding losses are computed by considering a 1-D

model of a transformer with foil windings. In [2] winding

losses are calculated for a unipolar rectangular waveform as

encountered in forward converter topology. In [1] and [2],

for a non-sinusoidal waveform, the winding loss at each

harmonic frequency is evaluated and then summed up to give

the total winding losses. In [3] losses are calculated in rectifier

transformers by approximating the functions given in [1]. [4]

develops this idea of approximating the function to calculate

the optimal thickness of a conductor for various different

current waveforms. The given formula in [4] to determine

the optimal thickness was used in [5] to compare the single

layer and multi-layer windings. The optimal thickness formula

given in [4] and [5], is not very accurate for three layers

or less. Also, as the formula depends on differentiation of

the current waveform, it cannot be used in case of duty

cycle regulated square waveforms with negligible rise times.

Typically, switching times of high power IGBTs are in order

of hundreds of nano-seconds and switching frequency is in

tens of kilohertz.

This paper considers foil windings, as shown in Fig. 1, but

the analysis can also be applied to round conductors as shown

in [6]. For a sinusoidal current waveform the thickness of the

winding conductor for minimal power loss has been already

computed. But for a duty-cycle regulated square waveform a

large number of harmonics have to be considered as shown in

the next section. In this paper, it is shown that for large number

of layers, large number of harmonics have to be considered to

accurately predict AC power loss. This also implies difficulty

in the computation of optimal winding thickness by consider-

ing AC power loss as a sum of large number of harmonics. An

approximate formula for AC power loss is derived in this paper

that does not involve any series summation with large number

of terms and leads to comparatively easy determination of the

optimal winding thickness for a given number of layers and

duty cycle D.

II. VARIATION OF AC POWER LOSS WITH HARMONICS

A bipolar duty cycle modulated square current waveform is

considered as shown in Fig. 2. This current can be represented

by the following Fourier series:

i(t) = I0 +

∞
∑

k=1

√
2Ik sin(kωt) (1)

where,

Ik =
2
√
2I sin(kπD

2
)

kπ
(2)
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Fig. 1. Multi-layer foil winding of a transformer.
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Fig. 2. Duty regulated current waveform.

and as the waveform is symmetric,

I0 = 0 (3)

The AC power loss expression can be written as [1],

P =

∞
∑

k=1

8I2 sin2(kπD
2

)

k
3

2π2

ρ(MLT )N2

hδpη

×
[

sinh(2
√
k∆) + sin(2

√
k∆)

cosh(2
√
k∆)− cos(2

√
k∆)

+
2

3
(p2 − 1)

sinh(
√
k∆)− sin(

√
k∆)

cosh(
√
k∆) + cos(

√
k∆)

]

(4)

Here, it is assumed that,

Pbase =
8I2

π2
Rdc|d=δ (5)

where,

Rdc|d=δ =
N2ρ(MLT )

hδpη
(6)

is explained in the APPENDIX. Hence, the per unit power

loss Ppu,

P

Pbase
= Ppu =

∞
∑

k=1

sin2(kπD
2

)

k
3

2

×
[

sinh(2
√
k∆) + sin(2

√
k∆)

cosh(2
√
k∆)− cos(2

√
k∆)

+
2

3
(p2 − 1)

sinh(
√
k∆)− sin(

√
k∆)

cosh(
√
k∆) + cos(

√
k∆)

]

(7)
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Fig. 3. Plot of Ppu using (7) versus k at ∆ = 0.5, for p=5 and D=1.

As seen from (7), each harmonic component of Ppu falls as

a function of k
3

2 . For a duty cycle modulated square current

waveform, large number of harmonics have to be considered,

as k
3

2 is a slowly decaying function using (7). Fig. 3, shows a

plot of Ppu as a function of k at a given ∆ = 0.5, for 5 layers

and D = 1. Ideally, infinite number of harmonics have to be

considered but in practice only a finite number of harmonics

can be used to compute Ppu approximately. But Fig. 3, shows

that large number of harmonics have to be considered to

avoid significant errors. Hence, it is computationally difficult

to calculate the power loss using Fourier analysis method.

By using trigonometric identities (7) can be written as,

Ppu =

∞
∑

k=1

sin2(kπD
2

)

k
3

2

[

G1

2
+

(4p2 − 1)

6
G2

]

(8)

where G1 and G2 are,

G1 =
sinh(

√
k∆) + sin(

√
k∆)

cosh(
√
k∆)− cos(

√
k∆)

(9)

G2 =
sinh(

√
k∆)− sin(

√
k∆)

cosh(
√
k∆) + cos(

√
k∆)

(10)

The asymptotic values of both the functions in (9) and (10)

approach 1 for
√
k∆ > 2.5, as given in [4]. Hence, for each

∆ there is a particular harmonic number beyond which the

product
√
k∆ > 2.5 and the harmonic component of the power

loss becomes independent of ∆. For
√
k∆ > 2.5, both (9) and

(10) become 1 and Pk, the kth component of Ppu is,

Pk =
sin2(kπD

2
)

k
3

2

(

2p2 + 1

3

)

(11)

For smaller ∆ as shown in [4], Pk can be written as,

Pk =
sin2(kπD

2
)

k
3

2

[

1√
k∆

+

(

5p2 − 1

45

)

k3/2∆3

]

(12)

Now, (7) which is an infinite series sum depending on ∆, can

be split into a finite sum that depends on ∆ and an infinite
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sum independent of ∆.

Ppu =

[

1

∆

N∆
∑

k=1

sin2(kπD
2

)

k2
+

(

5p2 − 1

45

)

∆3

×
N∆
∑

k=1

sin2
(

kπD

2

)

+

(

2p2 + 1

3

)

×
∞
∑

k=N∆+1

sin2
(

kπD
2

)

k
3

2

]

(13)

where, N∆ is the harmonic number beyond which the har-

monic components of Ppu does not depend on ∆. Now, the

third term in (13) can be written as,

∞
∑

k=N∆+1

sin2(kπD
2

)

k
3

2

=

∞
∑

k=1

sin2(kπD
2

)

k
3

2

−
N∆
∑

k=1

sin2(kπD
2

)

k
3

2

(14)

The three finite summations can be represented as a function

of N∆, for a given duty ratio D, by curve fitting formula. The

curve fitting formula is of the form aN b
∆ + c. By using the

relation, N∆ = (2.5
∆
)2 the power loss Ppu can be represented

in terms of ∆. Hence, (13) takes the form,

Ppu =
1

∆

[

k1

(

2.5

∆

)k2

+ k3

]

+

(

5p2 − 1

45

)

(

3.125∆+ k4∆
3
)

+

(

2p2 + 1

3

)

×
[

k5 −
(

k6

(

2.5

∆

)2k7

+ k8

)]

(15)

The value of k5 is an infinite series sum which is known.

The constants k1 to k8 in (15) are functions of duty cycle D.

These constants are given in Table I for different values of D.

For a given current waveform (with a specific value of D), (15)

can be used to estimate the power loss for a given thickness

∆ and number of layers, p.

TABLE I
VALUE OF CONSTANTS FOR SPECIFIC DUTY RATIOS

Coefficients D = 0.25 D = 0.5 D = 0.6 D = 0.75 D = 0.8 D = 1

k1 -0.4153 -0.4103 -0.3173 -0.3165 -0.3029 -0.4505

k2 -0.9201 -0.9677 -0.9111 -0.821 -0.7975 -0.979

k3 0.5402 0.9252 1.037 1.158 1.186 1.234

k4 0.2426 0.25 0.2507 0.2512 0.2513 0.2515

k5 1.0785 1.4413 1.5336 1.6293 1.6508 1.6886

k6 -0.9608 -0.9089 -0.877 -0.8393 -0.8304 -0.8145

k7 -0.4904 -0.4706 -0.4539 -0.4325 -0.4272 -0.4175

k8 1.079 1.445 1.541 1.642 1.665 1.705

III. COMPUTATION OF ∆opt

There have been several ways proposed to calculate ∆opt,

[4] [7]. In [4], ∆opt is represented in terms of the rms

of differentiated current waveform, which is a closed form

formula but it cannot be used for duty cycle modulated

square waveforms with negligible risetimes. In [4], the entire

series was approximated by (12). This approximation is not

particularly true for low number of layers.
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Dowell formula Eq. (7) with 20000 harmonics

Proposed Method Eq. (15)

Fig. 4. Comparison of different methods for computation of Ppu.

To compute ∆opt using (7), N∆ should be known. For

smaller layers the value of ∆opt is close to 1, hence N∆ is

small. Therefore, for smaller layers, only few harmonics are

required for computation of ∆opt. Whereas, for larger number

of layers the value of ∆opt is much less than 1. Hence, N∆ is

very large. Therefore, in order to compute ∆opt large number

of harmonics have to be considered. In [7], ∆opt is represented

in terms of a ratio of two series summations but the harmonic

number till which the summations are to be carried out is not

mentioned.

Differentiation of (15) with respect to ∆, gives an implicit

equation involving ∆opt, (16)

−1

∆2
opt

[

k1

(

2.5

∆opt

)2k2

(2k2 + 1) + k3

]

+

(

5p2 − 1

45

)

(

3.125 + 3k4∆
2
opt

)

+

(

2p2 + 1

3

)

[

k6

(

2.5

∆opt

)2k7
(

2k7
∆opt

)

]

= 0 (16)

∆opt can be obtained by solving, (16) numerically. ∆opt can

also be computed using MATLAB’s optimization toolbox.

∆opt = m1p
m2 +m3 (17)

Table II, gives coefficients of a curve fitting formula shown in

(17), to compute ∆opt for specific duty ratios, for 1-25 layers.

TABLE II
COEFFICIENTS FOR COMPUTATION OF ∆opt

Coefficients D = 0.25 D = 0.5 D = 0.6 D = 0.75 D = 0.8 D = 1

m1 1.134 1.394 1.402 1.518 1.529 1.553

m2 -1.112 -1.061 -0.993 -1.026 -1.022 -1.016

m3 0.01386 0.0107 -0.001025 0.005249 0.004716 0.003636

IV. VALIDATION OF RESULTS

A duty cycle modulated square waveform of duty ratio

D = 1 is considered. A MATLAB code is written to compute

Ppu using (7) by considering 20000 harmonics for 1-25 layers

at ∆=0.1. Ppu is also computed by solving (15) and Fig. 4

shows a comparison of both methods. Then ∆opt is obtained

by searching the minimum value of Ppu. ∆opt is also found by
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Fig. 5. Comparison of different methods for computation of ∆opt.

solving (16) and by solving (17) and a comparison of all three

methods is shown in Fig. 5. If (7) is used to compute ∆opt

graphically for p = 2, ∆opt is 0.764, so only 11 harmonics

are required to compute ∆opt. But for p = 8, ∆opt is 0.191,

so 172 harmonics are required to compute ∆opt. If only 10

harmonics are considered then for p = 8, ∆opt is 0.329 leading

to an error of 72%. On the other hand, if (16) is solved using

MATLAB for p = 8, ∆opt is 0.175, leading to an error of

8.4%. Finally if (17) is used then ∆opt is 0.1893, leading to

an error of 0.91%. This confirms the advantage and efficiency

of the method proposed in this paper. Once ∆opt is determined

for a given layer p, optimal value of d can be found. Using

(15) it is possible to obtain an estimate of power loss for a

given layer p at the optimal thickness.

V. CONCLUSION

The copper loss in a multi-layer transformer winding for a

particular duty-cycle modulated current waveform at a given

frequency depends on the number of layers and the thickness

of each layer. For a given number of layers, there is an optimal

thickness that results in minimum copper loss.

It has been shown in this paper that Fourier series method

requires consideration of a large number of harmonics leading

to computational difficulty of power loss and determination

of optimal thickness. In contrast, an approximate closed form

expression for power loss has been derived in this paper that

does not involve any series summation. This paper presents a

simple expression to compute the optimal thickness for a given

number of layers which can be used to compute the power

loss. Through numerical computation this approach has been

validated. A designer can simply use these formulas instead of

writing complex computationally demanding MATLAB codes

to obtain optimal thickness and estimate the copper loss.
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APPENDIX

The dc resistance of a single layer of a transformer contain-

ing multiple turns at a thickness equal to the skin depth of the

conductor as shown in Fig. 6 is

a

δ

h

Fig. 6. Multi-turn Multi-layer foil winding of a transformer.

Rdc|d=δ =
Nlρ(MLT )

aδ
(A.1)

For a transformer, containing p layers, the Rdc|d=δ takes

the form,

Rdc|d=δ =
Nlρ(MLT )p

aδ
(A.2)

Substituting a as ηh/Nl and Nlp as N ,

Rdc|d=δ =
N2ρ(MLT )

hδpη
(A.3)

3741

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on August 13,2024 at 07:50:30 UTC from IEEE Xplore.  Restrictions apply. 



 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move up by 3.60 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     3.6000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     4
     3
     4
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move up by 3.60 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     3.6000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     4
     3
     4
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 3.60 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     3.6000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

      
       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     4
     0
     1
      

   1
  

 HistoryList_V1
 qi2base



